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A B S T R A C T

Ecosystem modelling is a useful tool for exploring the potential outcomes of policy options and conducting
experiments that would otherwise be impractical in the real world. However, ecosystem models have been
limited in their ability to engage in the management of living marine resources due in part to high levels of
uncertainty in model parameters and model outputs. Additionally, for multispecies or food web models, there is
uncertainty about the predator-prey functional response, which can have implications for population dynamics.
In this study, we evaluate the sensitivity of large marine food webs in Alaska to parameter uncertainty, including
parameters that govern the predator-prey functional response. We use Rpath, an R implementation of the food
web modeling program Ecopath with Ecosim (EwE), to conduct a series of mortality-based perturbations to
examine the sensitivity and recovery time of higher trophic level groups in the eastern Chukchi Sea, eastern
Bering Sea, and Gulf of Alaska. We use a Monte Carlo approach to generate thousands of plausible ecosystems by
drawing parameter sets from the range of uncertainty around the base model parameters. We subjected the
ecosystem ensembles to a series of mortality-based perturbations to identify which functional groups the higher
trophic level groups are most sensitive to when their mortality was increased, whether the food webs returned to
their unperturbed configurations following a perturbation, and how long it took to return to that state. In all
three ecosystems, we found that the number of disrupted ensemble food webs was positively related to the
biomass and the number of trophic links of the perturbed functional group, and negatively related to trophic
level. The eastern Chukchi Sea was most sensitive to perturbations to benthic invertebrate groups, the eastern
Bering Sea was most sensitive to shrimp and walleye pollock, and the Gulf of Alaska was most sensitive to
shrimps, pelagic forage fish, and zooplankton. Recovery time to perturbations were generally less than 5 years in
all three ecosystems. The recovery times when fish groups were perturbed were generally longer than when
benthic invertebrates were perturbed, and recovery times were shortest when it was pelagic invertebrates. The
single model ensemble approach produced simulation results that described a range of possible outcomes to the
prescribed perturbations and provided a sense for how robust the results are to parameter uncertainty.

1. Introduction

In recent decades the incorporation of ecosystem considerations into
the management of living marine resources has been undertaken to
varying degrees in several jurisdictions and large marine ecosystems
(FAO 2003, Pitcher et al. 2009, National Ocean Council 2013). To
consider the broader ecosystem effects of marine resource management
actions, it is necessary to make decisions between policy options based
on predicted or expected outcomes and to consider tradeoffs among
competing interests (Walters and Martell 2004, Link 2010). Thus,
ecosystem modelling of possible outcomes to policy actions or inaction
are required to explore potential future ecosystem states that may result

from management decisions (Walters and Martell 2004,
Hollowed et al. 2011, Lehuta et al. 2016). Modelling in its many forms
is integral to the management of living marine resources and to the
implementation of an ecosystem-based approach to management
(Plagányi 2007, Coll and Libralato 2012, Fogarty 2014,
Busch et al. 2016, National Marine Fisheries Service 2016). Models can
be qualitative or quantitative and can be used to enhance general
ecosystem understanding or to inform strategic guidance and tactical
management decisions (Hollowed et al. 2000, Plagányi 2007,
Harvey et al. 2016). Additionally, experiments can be conducted with
models that would otherwise be impractical in the real world, permit-
ting the exploration of policy options, climate effects, or other
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anticipated stressors, and help to discern important ecological thresh-
olds and tradeoffs.

A major impediment to the adoption and use of ecosystem models in
ecosystem-based management (EBM) is addressing uncertainty in
models and their outputs in a satisfactory manner (Murawski 2007,
Link et al. 2012, Patrick and Link 2015). There are a wide range of
ecosystem models with differing levels of complexity, from multispecies
and models of intermediate complexity (MICE, Plaganyi et al. 2014), to
models of whole food webs, bio-economic models and end-to-end bio-
physical models. There is a tradeoff between increasing the realism and
complexity of a model and a commensurate increase in the overall
uncertainty associated with the model (Collie et al. 2016). This has led
to a concern among some scientists and stakeholders that some eco-
system models are too complex and too ambitious in the scope and scale
of the processes they are attempting to represent, that these models
require more data and information than we possess or could ever attain,
and therefore their outputs are of little value (Beckage et al. 2011,
Ruiz and Kuikka 2012, Planque 2016). Thus, it is critically important
for models intended to support EBM to be candid about uncertainty and
to provide accurate accounts of the sources and degree of uncertainty in
a model and its parameters, and to characterize that uncertainty in
model results (Link et al. 2012).

Several modeling studies and workshops have attempted to address
concerns about uncertainty and have assembled lists of best practices
for modelling in support of marine EBM (e.g., FAO 2008,
Townsend et al. 2008, Link et al. 2010, Kaplan and Marshall 2016).
These comprehensive lists of best practices are often applicable to a
broad range of ecosystem models and do not necessarily target one
model type or specific model framework. A common entry to these best
practices is a call for explicit characterization of uncertainty in model
inputs and parameters, and to carry this uncertainty through the
modelling or simulation process to indicate the uncertainty in model
outputs. Including the uncertainty in simulation results helps to avoid a
false sense of certainty in model outcomes and can help to communicate
the strength of results to managers and stakeholders. Another re-
commended best practice for multispecies ecological models is to con-
sider the importance of the predator-prey functional response to bio-
mass dynamics, and to evaluate the robustness of model results to
alternative forms of this response (FAO 2008). The specific form of the
predator-prey functional response is generally not well known for any
particular trophic relationship, however it can have a profound impact
on biomass dynamics (Mackinson et al. 2003, Gaichas et al. 2011,
Gaichas et al. 2012).

In this study, we focus our attention on the treatment of parameter
uncertainty in the widely used marine food web modelling framework
Ecopath with Ecosim (EwE, ecopath.org, Christensen and Walters
2004). We employ a simplified Bayesian synthesis routine
(Givens et al. 1993) for EwE that addresses the aforementioned best
practices by including uncertainty in the predator-prey functional re-
sponse for each trophic interaction, incorporating uncertainty into
model simulations for all of the base model parameters, and capturing
the effect of that parameter uncertainty in model outputs. We use a
single-model ensemble approach (Gal et al. 2014) to generate multiple
versions of the same EwE model by allowing the base model parameters
and the predator-prey functional response to vary within a prescribed
range based on a data pedigree. We then perform simulations on the
ensemble of generated models to produce a range of outcomes to the
simulated scenarios and examine the robustness of model outcomes to
parameter uncertainty.

The static mass-balance model Ecopath was originally developed by
Polovina (1984) to produce estimates of biomass and production for
species and functional groups in a coral reef ecosystem in the French
Frigate Shoals. The program has since had the time dynamic modeling
framework Ecosim (Walters et al. 1997) added, which allows for si-
mulations, hypothesis testing, and policy exploration. Since its in-
troduction, more than 400 unique EwE models have been developed

describing freshwater and marine ecosystems from the tropics to polar-
regions (Colléter et al. 2015).

There have been several efforts to address input parameter sensi-
tivity and uncertainty in EwE models. Previous versions of EwE con-
tained a Monte Carlo routine called ‘EcoRanger’, which used a data
pedigree and corresponding confidence intervals to generate an en-
semble of static Ecopath models to explore model sensitivity to un-
certain parameter estimates. Recently, Steenbeek et al. (2018) has de-
veloped the Ecosampler module for the EwE program, which also uses a
Monte Carlo routine and data pedigree to generate ensembles of ba-
lanced Ecopath models which can be passed to Ecosim, Ecospace, or
other EwE plug-ins for further analysis. Other routines for generating
Ecopath model ensembles have been developed independent of EwE
and implemented in Matlab (Kearney 2017) and R (Koehn et al. 2016).
Aydin et al. (2005) developed a similar routine called Ecosense, for
generating ensembles of Ecosim parameters from a single Ecopath
model in the C++ environment, enabling dynamic simulations with all
ensemble members (Aydin et al. 2003, Gaichas et al. 2015). With
Ecosense, the user can vary the base model parameters, diet composi-
tions, non-predation natural mortality, and the parameters governing
the predator-prey functional response (Gaichas et al. 2012). For this
study we use the Ecosense routine to generate EwE model ensembles
but have adapted the routine to work with a prototype of an in-
dependent version of EwE called “Rpath” (Lucey et al., 2020), which
was developed to work with the open source statistical program R
(R Core Team 2015). Rpath uses the same equations and algorithms of
EwE but has the advantages of improved access to the model code and
the flexibility to modify the code for user-defined analyses and simu-
lations.

In this study, we execute a series of time-dynamic simulations with
EwE model ensembles of three distinct marine ecosystems in Alaska, the
eastern Chukchi Sea, the eastern Bering Sea, and the Gulf of Alaska, to
investigate the sensitivity of higher trophic level groups to mortality-
based perturbations. A perturbation analysis is a useful way to gain
insight into population dynamics and how species interact with each
other in a food web, mediated by their trophic interactions
(Bender et al. 1984, Schmitz 1997). Using a comparative approach can
help highlight results that distinguish one ecosystem from the others,
features that might otherwise go unnoticed (Megrey et al. 2009). We
attempt to identify which functional groups the higher trophic levels
are most sensitive to when their mortality is increased, whether the
food webs returned to their unperturbed configurations following a
perturbation, and how long it took to return to that state. By in-
corporating the uncertainty in the base Ecopath model parameters, the
predator-prey functional response, and using an ensemble approach, we
are able to characterize uncertainty in Ecosim results by describing the
range of possible outcomes among ensemble members. Additionally, we
look for correlations between the number of disrupted ensemble food
webs and the trophic level, biomass, and number of trophic links of the
perturbed group.

2. Methods

2.1. Modeling Framework

We use existing trophic mass-balance food web models of the
eastern Chukchi Sea (Whitehouse and Aydin 2016), eastern Bering Sea,
and Gulf of Alaska (Aydin et al. 2007) that were developed using the
EwE framework. Ecopath is a biomass compartment model where each
compartment represents a species or functional group of multiple spe-
cies and describes the network of energy flows between groups in a food
web. Ecopath is a static, mass-balanced model and it provides a spa-
tially homogeneous “snapshot” of the trophic structure and function of
an ecosystem. The mass-balance requirement ensures there is sufficient
production in any compartment to meet the modeled demand from
predators or any fishery removals. The interactions between species in a
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food web are described by Ecopath with a set of linear equations for
each group i with predator j as

= + +B P
B

EE C BA B Q
B

DC* * * *i
i

i i i
j

j
j

ij
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where B is biomass (t km−2), P/B (yr−1) is the production to biomass
ratio, Q/B (yr−1) is the consumption to biomass ratio, DCij is the pro-
portion of prey i in the diet of predator j, BA is a biomass accumulation
term, C is subsistence harvest or fisheries catch (t km−2), and EE is
ecotrophic efficiency which is the proportion of production (Bi*(P/B)i)
that is consumed by predators and removed by harvests/fisheries in-
cluded in the model. Mass-balance is achieved when the system of
linear equations is solved for one missing parameter for each functional
group. A diet matrix (DCi) and BAi term (if BAi> 0) must be entered by
the user and typically, estimates for B, P/B, Q/B, are C are also provided
by the user and the equation(s) solved for EE. Values of EE range from 0
to 1, and are close to one for groups subject to heavy predation and/or
fishing pressure, and it is close to zero for groups that experience little
predation and/or fishing pressure (Christensen et al. 2005). Often, in-
itial attempts to balance a model are unsuccessful and several func-
tional groups may be out of balance (EE > 1) indicating they are being
consumed and/or removed at a rate greater than their production. This
is often the result of an incompatible set of model inputs (e.g., predator
consumption in excess of prey production) or due to an error in the
model (e.g., misplaced decimal). When parameters are determined to
be incompatible, they will need to be reconciled to bring the model into
balance. This can involve recalculating or manually adjusting a para-
meter based on new information, selecting an alternative parameter
from the literature, or using Ecopath to solve for the parameter in
question by fixing EE and solving for the suspect parameter. A data
pedigree (see section 2.3 Incorporating Parameter Uncertainty) can be
used to determine which parameters have the greatest uncertainty and
should be considered first for adjustment. The models used in the cur-
rent study are already balanced and no additional modifications were
required.

Ecosim is the time dynamic counterpart of Ecopath and provides the
user with the ability to conduct simulations and to test hypotheses on
the entire food web (Walters et al. 1997). In Ecosim the system of
Ecopath mass balance equations are converted to a set of differential
equations describing the biomass dynamics of functional groups, linked
together through their trophic interactions and predator-prey func-
tional responses. The biomass dynamics of each functional group is
modeled as

=dB
dt
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where GE is the growth efficiency and is equal to the production rate
(P/B) divided by the consumption rate (Q/B), Q is consumption (t km−1

yr−1), F is the fishing exploitation rate (yr−1), and M0 is “other” mor-
tality (yr−1) not explicitly represented in the model. M0i is equal to 1-
EEi and includes mortality sources such as disease, senescence, starva-
tion, or outmigration. The terms Q(Bi,Bj) represent the functional re-
sponse equations.

The strength of predator-prey interactions can have a strong impact
on biomass dynamics and the shape of the functional response can be
different for each trophic link in the food web. Ecosim employs a
“foraging arena” model to represent the functional response of groups
to changing biomass and consumption (Walters et al. 1997,
Ahrens et al. 2012). The foraging arena model assumes that at any
given time only a proportion of the prey population is vulnerable to a
predator. Following Aydin (2004), the predator-prey functional re-
sponse is expressed as
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where Q/B* is the predator Q/B from the base Ecopath starting point,
DC* is the proportion of the prey in the predator's diet at the starting
point, Bpred,t and Bprey,t are the biomasses of the predator and prey at
time t, B*pred and B*prey are the predator and prey biomasses at the
starting point, and X*predprey is the vulnerability parameter which de-
scribes the rate of prey movement between vulnerable and invulnerable
states. Low prey vulnerabilities are associated with bottom-up effects
where increasing the predator population does not necessarily have
measurable impact on the prey population. High vulnerabilities are
consistent with top-down effects, where vulnerable prey populations
are more severely impacted by fluctuations in predator abundance. In
theory, the vulnerability parameter ranges from one to +∞ and is
centered on two. The effective range of X*predprey is from 1.01 to 91
(Gaichas et al. 2012), and the default value in EwE is two.

2.2. The Food Web Models and System Descriptions

2.2.1. Eastern Chukchi Sea
The eastern Chukchi Sea is a broad and shallow continental shelf

ecosystem off the coast of northwest Alaska (Figure 1), with most
depths less than 60 m (Jakobsson 2002). The Chukchi Sea is connected
to the Pacific Ocean through the Bering Strait at its southern edge.
There is a net northward flow of water through Bering Strait and across
the continental shelf, although seasonal and episodic variation can af-
fect the direction and magnitude of flow (Coachman and Aagaard 1981,
Woodgate et al. 2012, Danielson et al. 2014). The Chukchi Sea is sub-
ject to polar night and is seasonally covered by sea-ice. Primary pro-
duction in the spring begins with production from ice algae within and
along the underside of sea-ice (Cota and Smith 1991,
Horner et al. 1992), and large pelagic blooms have recently been ob-
served in the water column beneath the ice (Arrigo et al. 2014). Waters
flowing into the Chukchi Sea through Bering Strait during the ice-free
season can be rich with nutrients and fuels areas of intense productivity
in the southern Chukchi Sea (Sambrotto et al. 1984, Springer and
McRoy 1993). Only a limited portion of the annual primary production
is consumed by zooplankton (Cooney and Coyle 1982, Coyle and
Cooney 1988, Campbell et al. 2009) and much of it sinks to the seafloor
and supports an abundant benthic community (Grebmeier et al. 2015).
Currently, there are no industrial scale commercial fisheries in the US
territorial waters of the eastern Chukchi Sea (NPFMC 2009). However,
there are subsistence fisheries and harvests of marine mammals
(Craig 1987, Hovelsrud et al. 2008, Fall et al. 2011). The eastern
Chukchi Sea food web model covers an area of ~192,000 km2 in the
eastern portion of the Chukchi Sea within US territorial waters. There
was no ecosystem basis for modeling only the eastern half of the
Chukchi Sea, this decision was based on the availability of data
(Whitehouse et al. 2014).

2.2.2. Eastern Bering Sea
The eastern Bering Sea is a broad continental shelf ecosystem en-

compassing an area of ~ 495,000 km2. The modelled area extends from
Unimak Pass and Bristol Bay northwestward to about 61°N
(Aydin et al. 2007) (Figure 1). The major inputs of water to the con-
tinental shelf are through Unimak Pass in the south, advection through
canyons along the continental slope to the west, and seasonal fresh-
water input from river drainage (Stabeno et al. 2016b). Portions of the
southeastern Bering Sea continental shelf are seasonally covered by sea-
ice which moves in from the northern Bering Sea in late winter. A “cold
pool” of water (<2°C) remains over the shelf following the retreat of
sea-ice in the spring; the extent of which varies from year to year with
the extent of sea-ice coverage (Sullivan et al. 2014). The size and
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location of the cold pool has important implications for species dis-
tribution and community composition at multiple trophic levels
(Mueter and Litzow 2008, Stevenson and Lauth 2012,
Eisner et al. 2018), and for recruitment of commercially important
fishes (Hunt et al. 2011, Duffy-Anderson et al. 2016). The eastern
Bering Sea has several productive commercial fisheries, including
fisheries for species of gadids, flatfishes, and crabs (NPFMC 2011,
2017a). Fisheries are executed with multiple gear types including
trawls, longlines, and pots. The walleye pollock (Gadus chalcogrammus,
hereafter referred to as pollock) fishery is one of the largest single-
species fisheries in the world with average catches of 1.2 million t per
year since the 1970s (Ianelli et al. 2017).

2.2.3. Gulf of Alaska

The Gulf of Alaska is located in the northeast Pacific and has a
continental shelf of varying width that stretches along the Alaska coast
from the US-Canada border, then north and west around the margin of
the Gulf to the Aleutian Islands at its western end (Figure 1). The Gulf of
Alaska model encompasses the continental shelf waters of the Gulf of
Alaska from 140°W to 170°W, a total area of 291,840 km2

(Aydin et al. 2007, Gaichas et al. 2010). The continental shelf is de-
tailed with islands and bays and the continental slope has many gullies
carved into its margins. The net circulation in the gulf is in the coun-
terclockwise direction. Productivity in the gulf is influenced by the
development of eddies, gap winds between mountains along the coast,
upwelling, and freshwater runoff from the coast (Ladd and Cheng 2016,
Ladd et al. 2016, Stabeno et al. 2016a). The community composition
and relative species abundance on a multi-year timescale is influenced
by large-scale climate drivers such as the El Niño Southern Oscillation
and the Pacific Decadal Oscillation (PDO) (Mantua et al. 1997,

Hollowed et al. 2001). A regime shift in community organization was
observed in the mid-1970s and coincided with a shift in the PDO from a
negative phase (cooler SST) to a positive phase (warmer SST)
(Mantua et al. 1997). Prior to the regime shift the community compo-
sition was dominated by shrimp and capelin; afterwards groundfish
(including gadids and flatfish) became increasingly abundant while the
relative abundance of shrimp and capelin decreased (Anderson and
Piatt 1999). Historically, the Gulf of Alaska hosted several commer-
cially valuable crab fisheries that peaked in ex-vessel value in the early
1980s, then catch for crabs declined rapidly to less than 20% of their
maximum, with most crab fisheries closed by the mid-1980s
(Orensanz et al. 1998). Currently, the Gulf of Alaska has several pro-
ductive finfish fisheries including pollock, Pacific cod (Gadus macro-
cephalus), sablefish (Anoplopoma fimbria), flatfish (Pleuronectidae), and
rockfish (Sebastidae) (NPFMC 2017b).

2.2.4. Functional Groups
The three EwE models used in this analysis originally had different

numbers of functional groups, with 149 in the eastern Bering Sea, 138
in the Gulf of Alaska, and 67 in the eastern Chukchi Sea. Differences in
the level of trophic aggregation can make comparisons between models
difficult to interpret (Pinnegar et al. 2005). To make the models more
comparable a minimum amount of aggregation prior to conducting si-
mulations was necessary. However, we also need to balance this with
maintaining some of the functional groups or species of heightened
interest in each food web (e.g., commercially important species, pro-
tected species, keystone species). The eastern Bering Sea and Gulf of
Alaska models had finer levels of taxonomic resolution among several
categories including fishes, zooplankton, and marine mammals. To
make these groups more comparable across all three models, species-
specific groups were consolidated to a common functional group. For

Figure 1. Alaska marine ecosystems used in this study.
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Table 1
Functional groups aggregated from each of the three food web models. The aggregated groups used in this study are listed in the left column. For the species
composition of a functional group please consult the original model source documentation; Aydin et al. (2007) for the eastern Bering Sea (EBS) and Gulf of Alaska
(GOA) models, and Whitehouse and Aydin (2016) for the eastern Chukchi Sea (ECS).

Aggregated Group EBS GOA ECS

Polar bears Polar Bear Chukchi
Polar Bear S Beaufort

Toothed whales Beluga Transient killer whales Beluga
Transient killer whales Sperm and beaked whales
Sperm and beaked whales Resident killer whales
Resident killer whales Porpoises
Porpoises

Gray whale Gray whale Gray whale Gray whale
Bowhead whale Bowhead whale Bowhead whale
Other baleen whales Humpbacks Humpbacks

Fin whales Fin whales
Sei whales Sei whales
Right whales Right whales
Minke whales Minke whales

Walrus/bearded seal Pac. walrus/bearded seal Pacific walrus
Bearded seal

Wintering seals Wintering seals Ringed seal
Spotted seal

Other pinnipeds Northern fur seal (juv) Northern fur seal (juv)
Northern fur seal Northern fur seal
Steller sea lion (juv) Steller sea lion (juv)
Steller sea lion Steller sea lion
Resident seals Resident seals
Sea otters Sea otters

Procellarids Shearwaters Shearwaters Procellarids
Fulmars Fulmars

Alcids piscivorous Murres Murres Alcids piscivorous
Puffins Puffins

Alcids planktivorous Auklets Auklets Alcids planktivorous
Larids Gulls Gulls Larids

Kittiwakes Kittiwakes
Cormorants Cormorants Cormorants Cormorants
Other seabirds Storm petrels Storm petrels Scolopacids

Albatross/Jaeger Albatross/Jaeger
Sharks Sleeper shark Sleeper shark

Salmon shark
Dogfish

Skates Alaska skate Other skates Alaska skate
Other skates Longnosed skate

Big skate
Walleye pollock Walleye pollock (juv) Walleye pollock (juv) Walleye pollock

Walleye pollock Walleye pollock
Pacific cod Pacific cod (juv) Pacific cod (juv) Pacific cod

Pacific cod Pacific cod
Arctic cod Arctic cod
Large-mouth flatfish Arrowtooth flounder (juv) Arrowtooth flounder (juv) Large-mouth flatfish

Arrowtooth flounder Arrowtooth flounder
Kamchatka flounder (juv) Pacific halibut (juv)
Kamchatka flounder Pacific halibut
Greenland turbot (juv)
Greenland turbot
Pacific halibut (juv)
Pacific halibut

Small-mouth flatfish Yellowfin sole (juv) Yellowfin sole Small -mouth flatfish
Yellowfin sole Flathead sole (juv)
Flathead sole (juv) Flathead sole
Flathead sole Southern rock sole
Northern rock sole (juv) Northern rock sole
Northern rock sole Alaska plaice
Alaska plaice Dover sole
Dover sole Rex sole
Rex sole Miscellaneous flatfish
Miscellaneous flatfish

Eelpouts Eelpouts Eelpouts Eelpout
Large-mouth sculpins Large sculpins Large sculpins Large-mouth sculpin
Other sculpins Other sculpins Other sculpins Other sculpin
Miscellaneous shallow fish Misc. fish shallow Misc. fish shallow Misc. shallow fish

Saffron cod
Salmon returning Salmon returning Salmon returning Salmon returning
Salmon outgoing Salmon outgoing Salmon outgoing Salmon outgoing
Pelagic forage fish Bathylagidae Bathylagidae Pelagic forage fish

Myctophidae Myctophidae

(continued on next page)
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Table 1 (continued)

Aggregated Group EBS GOA ECS

Capelin Capelin
Sandlance Sandlance
Eulachon Eulachon
Other managed forage Other managed forage
Other pelagic smelt Other pelagic smelt
Pacific herring (juv) Pacific herring (juv)
Pacific herring Pacific herring

Other demersals Sablefish (juv) Sablefish (juv) Other snailfish
Sablefish Sablefish Variegated snailfish
Atka mackerel (juv) Atka mackerel (juv)
Atka mackerel Atka mackerel
Greenlings Greenlings
Pacific ocean perch Pacific ocean perch (juv)
Sharpchin rockfish Pacific ocean perch
Northern rockfish Sharpchin rockfish
Dusky rockfish Northern rockfish
Shortraker rockfish Dusky rockfish
Rougheye rockfish Shortraker rockfish
Shortspine thornyhead Rougheye rockfish
Other Sebastes Shortspine thornyhead (juv)
Grenadiers Shortspine thornyhead
Miscellaneous fish deep Other Sebastes

Grenadiers
Miscellaneous fish deep

Octopods Octopi Octopi Cephalopods
Snow crab Opilio Snow crab
Other crabs Bairdi Bairdi Other crabs

King Crab King Crab
Hermit crabs Hermit crabs
Miscellaneous crabs Miscellaneous crabs

Shrimps Pandalidae Pandalidae Shrimps
NP shrimp NP shrimp

Sea stars Sea stars Sea stars Sea stars
Brittle stars Brittle stars Brittle stars Brittle stars
Basket stars Basket stars
Urchins, dollars, cucumbers Urchins dollars cucumbers Urchins dollars cucumbers Urchins, dollars, cucumbers
Snails Snails Snails Snails
Miscellaneous crustaceans Miscellaneous crustaceans Miscellaneous crustaceans Miscellaneous crustaceans
Benthic amphipods Benthic amphipods Benthic amphipods Benthic amphipods
Anemones Anemones Anemones Anemones
Corals and sea pens Corals Corals Corals

Sea Pens Sea Pens
Benthic urochordate Urochordata Urochordata Benthic urochordate
Sponge Sponges Sponges Sponge
Bivalves Bivalves Bivalves Bivalves
Polychaetes Polychaetes Polychaetes Polychaetes
Worms etc. Miscellaneous worms Miscellaneous worms Worms etc.

Hydroids Hydroids
Squid Squids Squids
Scyphozoid Jellies Scyphozoid Jellies Scyphozoid Jellies Jellyfish
Copepods Copepods Copepods Copepods
Other zooplankton Fish Larvae Fish Larvae Other zooplankton

Chaetognaths Chaetognaths
Euphausiids Euphausiids
Mysids Mysids
Pelagic amphipods Pelagic amphipods
Gelatinous filter feeders Gelatinous filter feeders
Pteropods Pteropods

Pelagic microbes Pelagic microbes Pelagic microbes Pelagic microbes
Benthic microbes Benthic microbes Benthic microbes Benthic microbes
Primary Production Macroalgae Macroalgae Phytoplankton

Large phytoplankton Large phytoplankton
Small phytoplankton Small phytoplankton
Outside production Outside production

Pelagic detritus Pelagic detritus Pelagic detritus Pelagic detritus
Discards Discards
Outside detritus Outside detritus

Benthic detritus Benthic detritus Benthic detritus Benthic detritus
Offal Offal

Fishery/Subsistence Pollock trawl Halibut longline Polar bear Chukchi Russ. harvest
Cod trawl Crab pots Polar bear Chukchi US harvest
Cod pots Herring fishery Polar bear S Beaufort US harvest
Cod longline Salmon fishery Beluga subsistence
Atka trawl Indigenous and subsistence Bowhead subsistence
Rsflats trawl Flatfish trawl Walrus subsistence

(continued on next page)
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example, capelin (Mallotus villosus), Pacific herring (Clupea pallasi) and
other functional groups of primarily pelagic forage fish were combined
into a single pelagic forage fish group in each model. The biomasses and
fisheries catch of functional groups aggregated into a single group were
summed together. The P/B, Q/B, and DC for the aggregated groups
were weighted by the biomass of the constituent groups.

The total number of functional groups in the aggregated models are
54 in the eastern Bering Sea, 50 in the Gulf of Alaska, and 53 in the
eastern Chukchi Sea (Table 1). Forty-six of the groups are common to
all three models. The polar bear (Ursus maritimus), Arctic cod, and
basket star (Gorgonocephalus sp.) groups are unique to the eastern
Chukchi Sea model. The bowhead whale, Pacific walrus/bearded seal,
wintering seals, and snow crab groups are only present in the eastern
Bering Sea and eastern Chukchi Sea models. Other baleen whales, other
pinnipeds, sharks, and the squids group are only present in the eastern
Bering Sea and Gulf of Alaska models. Because the use of functional
group names in the text can be confusing, from here on when referring
to a functional group from one of the models the name will be italicized.
The eastern Bering Sea and Gulf of Alaska models included more fishing
groups, detrital compartments, and sources of primary production than
the eastern Chukchi Sea model. The primary production and detritus
groups in the eastern Bering Sea and Gulf of Alaska models were ag-
gregated to match the number of respective groups in the eastern
Chukchi Sea model: one primary production and two detrital com-
partments. Because we are not exploring fishery policy options in this
study, we have aggregated all fisheries/subsistence harvests to a single
compartment in each model.

2.3. Incorporating Parameter Uncertainty

The precision of parameter estimates across functional groups is
usually uneven, and in many cases, the uncertainty is high. We in-
corporate parameter uncertainty into our simulations with a Monte
Carlo routine used to generate entire sets of food web model (EwE)
parameters based on the Ecosense routine of Aydin et al. (2005). The
Ecosense routine generates entire sets of Ecosim food web parameters
randomly drawn from prior distributions based on a data pedigree.

All model parameters and/or data were graded for quality using a
data pedigree described by Christensen et al. (2005), with specific de-
finitions from Aydin et al. (2007). Model parameters and data were
assigned a data pedigree based upon the data source, collection meth-
odology, temporal and spatial coverage of the dataset, and taxonomic
relevance (Table 2). Complete explanations of data pedigree values for
the base Ecopath models used in this study can be found in the model's
source documentation (Aydin et al. 2007, Whitehouse and Aydin 2016).
Each data pedigree corresponds to a prescribed range as a proportion of
the point estimate (coefficient of variation, CV), intended to char-
acterize parameter uncertainty, ranging from 0.1 to 0.8 (Table 3).
Parameters for B, P/B, and Q/B were drawn from uniform distributions

centered on the base Ecopath model parameter estimates with the
specified CVs. M0 is selected from a uniform distribution centered on
the base Ecopath value using the respective species P/B CV. M0 is
normally set by Ecopath during initial model balancing as 1 minus EE.

Table 1 (continued)

Aggregated Group EBS GOA ECS

YFSflats trawl Other groundfish trawl Bearded seal subsistence
ATFflats trawl Cod longline Ringed seal subsistence
FHSflats trawl Cod pots Spotted seal subsistence
Other flatfish trawl Cod trawl
Turbot trawl Pollock trawl
Turbot longline Rockfish trawl
Sablefish longline Sablefish longline
Rockfish trawl Shrimp trawl
Halibut longline
Crab pots
Salmon fishery
Herring fishery
Indigenous
Subsistence

Table 2
The criteria for the data pedigrees (or data quality grade). B = biomass, P/
B = production/biomass ratio, Q/B = consumption/biomass ratio, DC = diet
composition, and C = fishery catch or subsistence harvest. This table recreated
from Aydin et al. (2007).

Data pedigree and corresponding data characteristics
B, P/B, Q/B, DC, and C

1 Assessment data is established and substantial, from more than one independent
method (from which the best method is selected) with resolution on multiple
spatial scales.

2 Data is a direct estimate but with limited coverage/corroboration, or established
regional estimate is available while subregional resolution is poor.

3 Data is proxy, proxy may have known but consistent bias.
4 Direct estimate or proxy with high variation/limited confidence or incomplete

coverage.

B and C P/B, Q/B, and DC

5 Estimate requires inclusion
of highly uncertain scaling
factors or extrapolation

5 Estimation based on same species but in
"historical" time period, or a general
model specific to the area.

6 Historical and/or single
study only, not overlapping
in area or time.

6 For P/B and Q/B, general life history
proxies or other Ecopath model. For DC,
same species in adjacent region or similar
species in the same region.

7 Requires selection between
multiple incomplete sources
with wide range.

7 General literature review from a wide
range of species, or outside the region. For
DC, from other Ecopath model.

8 Estimated by Ecopath 8 Functional group represents multiple
species with diverse life history traits. For
P/B and Q/B, estimated by Ecopath.

Table 3
The range, as a proportion of the input parameter, associated with the assigned
data pedigree for the basic model input parameters (Aydin et al. 2003).
B = biomass, P/B = production/biomass ratio, Q/B = consumption/biomass
ratio, and DC = diet composition.

Pedigree B P/B Q/B DC
Coefficient of variation (+/-)

1 0.1 0.1 0.1 0.1
2 0.1 0.2 0.2 0.3
3 0.5 0.3 0.3 0.5
4 0.5 0.4 0.4 0.6
5 0.5 0.5 0.8 0.7
6 0.8 0.6 0.6 0.8
7 0.8 0.7 0.7 0.8
8 0.8 0.8 0.8 0.8
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By selecting M0 independently, the ecosystem begins away from equi-
librium. The DC of a predator consists of proportions for each prey type
and must sum to one, therefore the drawing of random diet proportions
was treated differently than the other base parameters. Diet composi-
tion in terms of the presence or absence of a trophic link does not vary
in the Ecosense routine. Diet proportions for each prey item in a pre-
dator's diet were drawn from a Dirichlet distribution and not allowed to
be equal to zero.

While fishery catch (C) is not directly drawn in the Ecosense rou-
tine, the observed catch will vary between drawn ecosystems due to
differences in the drawn starting biomass values and the subsequent
effect on catch. In Rpath, the catch of a group can be regulated by effort
(E), fishing mortality (F), or by manually entering catch (Cinput). The
catch of a functional group i is calculated as

= + +C q E F B Cti
g

ig tg ti i ti
input

(4)

where Cti is the catch of group i at time t, g is gear type, qi is a catch-
ability coefficient of group i with gear g and is equal to the ratio of the
Ecopath base catch for group i with gear g to the starting biomass of
group i, Etg is the effort at time t for gear g and is either zero or one, FtiBi
is the F at time tmultiplied by biomass (B) for group i, and Cinput is catch
that is manually entered. By default, Rpath calculates the catch of
functional groups by effort (E=1) with q equal to the quotient of the
Ecopath catch and the starting biomass. The F and Cinput terms are set to
zero by default. To instead fish by F rate, E can be set equal to zero and
a value entered for F that can vary by time step if desired. Similarly,
specific catch values can be entered for Cinput if desired and E and F set
to zero. Below in section 2.4 we utilize the F term in this equation to
increase mortality during simulations.

The results of Ecosim simulations have been shown to be sensitive to
predator-prey functional responses, and use of the Ecosim default vul-
nerability (X*predprey=2) for all trophic links is not recommended
(Plagányi and Butterworth 2004, Gaichas et al. 2011,
Gaichas et al. 2012). Following the methods of Gaichas et al. (2012), we
vary vulnerability for each trophic link with random draws over the
effective range of vulnerability (1.01 to 91), centered on the default
value of two:

= +X exp Uniform* 1 (9*[ (0, 1) 0.5])predprey (4)

There are additional functional response parameters in Ecosim in-
cluding, prey handling time, foraging time, and prey-switching rate. We
held these additional functional response parameters at their default
values.

The generated Ecosim parameter sets are not necessarily starting
from a stable or equilibrium-like state. We ran the generated ecosys-
tems forward for a 50-year “burn-in” period, during which any nu-
merically unstable configurations were eliminated according to pre-
specified criteria. If during this initial 50-year run a functional group
dies out (Bi decreases to < 1/1000 of starting Bi) or grows without limit
(Bi increases to > 1000 times starting Bi), that entire ecosystem is
considered to have failed and that Ecosim parameter set is not retained
for further analysis (Aydin et al. 2005, Gaichas et al. 2015). This ty-
pically happens because of thermodynamically inconsistent parameter
draws. For example, parameter draws with exceptionally high predator
biomass and high consumption rates in an ecosystem with low prey
biomass and low prey production, incapable of supporting the ran-
domly drawn predator parameters. Such failed ecosystems tend to
“crash” during the first few years of the burn in period, and 50 years is
generally sufficient to eliminate all such thermodynamically incon-
sistent systems. Ecosystem parameter sets that do not crash during
burn-in are retained for further analyses.

The uncertainty in the model parameters combined with the ther-
modynamic constraints of the mass-balance framework and the burn-in
period of the Ecosense routine is sufficiently restrictive to eliminate
more than 90% of the generated food web parameter sets.

Gaichas et al. (2015) used Ecosense and the same rejection criteria and
rejected ~98% of generated ecosystems. Using the same criteria, re-
jection rates will vary across studies due to inherent differences in the
ecosystems modeled, the data pedigree, and other study-specific dif-
ferences in model design. For this study, we retained a minimum of 500
plausible ecosystem parameter sets for each of the three modeled eco-
systems. In the eastern Chukchi Sea, we generated 5,000 ecosystem
parameter sets and retained 511 ecosystems. For the eastern Bering Sea,
9,500 parameter sets were generated and 505 survived the burn-in
period with no crashes. In the Gulf of Alaska, we generated 12,000 food
web parameter sets in order to find 553 that were numerically stable
enough to survive burn-in.

The csv files required to operate Rpath with all three aggregated
ecosystem models used in this study are available in the supplementary
material. Additionally, an R file with the Ecosense parameter genera-
tion function is included in the supplementary material. The Rpath
package can be downloaded from https://github.com/NOAA-EDAB/
Rpath. This version of Ecosense presented here was developed to work
with a prototype version of the Rpath package (Lucey et al., 2020).
Ecosense will be included in a future release of Rpath and we anticipate
refinements to the Ecosense code will be necessary in order for it to be
formally included within the Rpath package.

2.4. Mortality-based perturbations

To examine the sensitivity of upper trophic level groups to mor-
tality-based perturbations, we first ran each retained model forward for
a 50-year run in Ecosim without any perturbation. This created a 50-
year simulated baseline from which we would be able to compare the
perturbation results against for each unique ecosystem configuration.
We conducted mortality-based perturbations by increasing the total
mortality 50% for each living functional group in the food web (ex-
cluding primary production and microbes), one at a time, and holding
that increased mortality rate in place for the first 10 years of a 50-year
simulation. Under equilibrium conditions, P/B is assumed to be equal to
the instantaneous mortality rate, Z (Allen 1971). Total mortality was
increased in our simulations by setting the F rate in equation four equal
to half of the respective group's P/B. When the adjusted F is multiplied
by the respective group's biomass, the product is added to the existing
catch by effort (E) already included in equation four and the functional
group's biomass is reduced accordingly. Following year 10, the per-
turbed mortality rate was returned to the baseline level and the simu-
lation allowed to run without any other perturbations for the remaining
40 years. This meant that for the three ecosystems included in this
analysis, the number of simulations was equal to the number of living
groups times the number of retained food web parameter sets. This was
equal to more than 24,000 simulations for each of the three ecosystems
included in this analysis.

To identify and follow any disturbance to the food web that resulted
from a perturbation we tracked the aggregated biomass of upper
trophic level groups. This is the sum of biomass for all groups with a
trophic level (TL) of 2.6 or higher, excluding fisheries. The eastern
Chukchi Sea, eastern Bering Sea, and Gulf of Alaska had 36, 35, and 31
functional groups with TL of 2.6 or higher, respectively. This division at
trophic level 2.6 effectively separated predators from those that pri-
marily preyed directly on basal resources. The diet compositions of
groups with TL < 2.6 all consist of at least 50% from detritus and/or
primary production. These lower trophic level consumers were mostly
benthic invertebrate groups, also zooplankton and microbes. If the
upper TL biomass deviated more than ± 10% from the baseline tra-
jectory during a simulation, that ecosystem was considered to have
been disrupted by the perturbation. For each perturbation, we kept
track of the number of ecosystems that were disrupted by that pertur-
bation. When an ecosystem was disrupted, we measured the recovery
time of the food web as the time it took for upper TL biomass to return
to within ± 10% of its baseline trajectory. We additionally kept track of
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Figure 2. (a, c, e) The percentage of generated ecosystems
where upper trophic level biomass deviated more than ±
10% from the baseline trajectory in response to perturbing
of a functional group. (b, d, f) The recovery time (years) of
generated ecosystems to a perturbation. The horizontal
black bars in the box plots represents the median recovery
times, boxes are the interquartile range, whiskers extend to
furthest point within 1.5 x the interquartile range, and
outliers are not shown. 2a – b are eastern Chukchi Sea
(n=511), 2c – d are eastern Bering Sea (n=505), 2e – f are
Gulf of Alaska (n=553). White boxes are pelagic in-
vertebrates, dark gray boxes are benthic-oriented in-
vertebrates, light gray boxes are fish groups, and black is
marine mammals (c and d).
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and enumerated instances where ecosystems did not return to their
baseline trajectory for upper TL biomass. We also looked for underlying
patterns in the simulation results and checked for correlations (Pearson
product-moment correlation, ρ, α = 0.05) between the number of
ecosystems disrupted by a perturbation and the trophic level, log bio-
mass, and the number of trophic links of the perturbed group.

3. Results

3.1. Eastern Chukchi Sea

Upper trophic levels in the eastern Chukchi Sea were most sensitive
to mortality-based perturbations of benthic invertebrate groups. In
general, upper trophic level biomass was disrupted in more of the
generated ecosystems by perturbations to benthic invertebrate groups
than perturbations to other functional groups (Figure 2a). In particular,
the food webs were most sensitive to perturbations of the brittle stars,
bivalves, shrimps, and polychaete worm functional groups. Each of these
four groups disrupted approximately 20% of the generated ecosystems.
Perturbations to fish groups generally disrupted upper trophic level
biomass in less systems than the benthic invertebrate groups. The mis-
cellaneous shallow fish, eelpouts, large-mouth flatfish, and other sculpins
were the most disruptive fish groups, each disrupting between 5 and 7%
of the generated ecosystems. Pelagic invertebrate groups when per-
turbed were less disruptive, each affecting less than 2.3% of ecosystems.
Perturbations to marine mammal and seabird groups did not disrupt
any of the ecosystems.

The median recovery times of the generated eastern Chukchi Sea
food webs to all of the perturbations were less than 10 years, and most
less than five (Figure 2b). The highest median recovery times were for
perturbations to small-mouth flatfish (9.9), the urchins, dollars, and cu-
cumbers group (8.9), and large-mouth flatfish (5.7). The range of re-
covery times for benthic invertebrate perturbations were generally
narrow, exceptions were for the urchins, dollars, cucumbers group and
brittle stars. The range of recovery times for the fish groups were gen-
erally wider than the benthic invertebrate groups. The median recovery
times for perturbations of pelagic invertebrate groups were all less than
1.5 years.

In all of the simulations (n=24,017) with the eastern Chukchi Sea
food web there were two instances where upper trophic level biomass
was disrupted by a perturbation and it did not return to within ± 10%
of its baseline trajectory. There was no indication from the relative
biomass trajectories of functional groups that either ecosystem had
shifted to an alternative stable state following the perturbation. In one
instance, the perturbed group itself accounted for a disproportionate
share of upper trophic level biomass, and in combination with a P/B
that was much lower than the base Ecopath P/B for that group, led to a
slow recovery following the perturbation (Figures S1 and S2). In the
second instance, some strong predator-prey functional responses (i.e.,
high vulnerabilities) produced an unrealistic high amplitude rapid os-
cillation of upper trophic level biomass that rendered this system im-
possible. Further details on these outliers are available in the supple-
mentary material.

3.2. Eastern Bering Sea

The perturbation that was most disruptive to upper trophic level
biomass in the eastern Bering Sea was shrimps. When shrimps were
perturbed 23.4% of the generated ecosystems were disrupted
(Figure 2c). The next most disruptive group was pollock, which dis-
rupted 11.3% of the systems. Other disruptive groups included pelagic
forage fish (9.9%), small-mouth flatfish (9.3%), and bivalves (8.7%).
Perturbations to copepods and other zooplankton were also disruptive to
upper trophic level biomass in 8.1% and 7.7% of systems, respectively.
With the exception of other baleen whales, the generated ecosystems
were insensitive to perturbations of marine mammal and seabird

groups. One generated ecosystem was disrupted by the perturbation to
other baleen whales.

The median recovery time of the generated ecosystems to pertur-
bations were all less than seven years and most less than four, with the
exception of the perturbation to other baleen whales (Figure 2d). The
single ecosystem where upper trophic level biomass was disrupted by
the perturbation to other baleen whales took 34.3 years to recover from
the perturbation. The next highest median recovery time was for mis-
cellaneous shallow fish (6.6 years), large-mouth flatfish (5.3 years), and
miscellaneous crustaceans (4.3 years). In general, the range of recovery
times for all the perturbations were relatively narrow.

In all the simulations (n=24,240) with the eastern Bering Sea food
web there were four occasions where upper trophic level biomass did
not return to within ± 10% of the baseline trajectory following a
perturbation. In the first instance, the perturbed group represented the
majority of upper trophic level biomass, and in combination with a P/B
that is much lower than the base Ecopath P/B for this group, prevented
a recovery by the simulation's end. In the second food web, most groups
were already experiencing a gradual monotonic decline in biomass. The
perturbed group expedited this decline in biomass, reducing upper
trophic level biomass well below the -10% threshold, and preventing a
return to within the ±10% threshold by the end of the simulation
(Figure S5). In a third case, high vulnerabilities led to high amplitude,
low frequency oscillations that prevented upper trophic level biomass
from stabilizing within the ±10% threshold by the end of the simula-
tion (Figures S6 and S7). In the fourth instance, high vulnerabilities led
to high amplitude, high frequency oscillations that were completely
unrealistic. Further details on these outliers are available in the sup-
plementary material.

3.3. Gulf of Alaska

Similar to the eastern Bering Sea, perturbations to shrimps were the
most disruptive to upper trophic level biomass in the Gulf of Alaska
food webs, affecting 30.6% of the generated ecosystems (Figure 2e).
The Gulf of Alaska food webs were also sensitive to perturbations of
pelagic oriented groups including pelagic forage fish (14.8%), other
zooplankton (14.3%), and copepods (7.2%). Perturbations to most of the
remaining fish groups produced some level of disruption in upper
trophic level biomass, ranging from 0.2 to 8% of the generated eco-
systems. Among benthic invertebrates, perturbations to bivalves (8.7%)
and snails (7.1%) were most disruptive to upper trophic level biomass.
Perturbations to marine mammals and seabirds did not disrupt upper
trophic level biomass in any of the generated ecosystems.

Among the functional groups whose perturbations disrupted upper
trophic level biomass, the median recovery time of the food web once
the perturbation ended was less than 5 years for all groups except
miscellaneous shallow fish, which had a median return time of 9.5 years
(Figure 2f). Perturbations to shrimps, pelagic forage fish, and other zoo-
plankton disrupted the most generated ecosystems but all three have
median return times of less than 2 years. Eight of the 10 longest median
return times belong to fish groups.

Of the simulations with the Gulf of Alaska food web (n=24,332)
there were two instances where upper trophic level biomass did not
return to within ± 10% of the baseline trajectory and in both cases the
perturbed group was miscellaneous shallow fish. In both of these gener-
ated ecosystems miscellaneous shallow fish accounted for sizeable por-
tions of upper trophic level biomass at 64% and 16%. It is their loss in
biomass that explains the overall loss in upper trophic level biomass in
both systems. Upper trophic level biomass slowly increases in both
systems following the end of the perturbation but does not increase fast
enough to return to the baseline trajectory by the end of the simulation.
Upper trophic level biomass was 17% and 16% below the baseline value
at the conclusion of the two simulations.
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3.4. Correlation with disrupted ecosystems

We tested for correlations between the percentage of ecosystems
where upper trophic level biomass was disrupted and properties of the
functional groups being perturbed including, log biomass, trophic level,
and the number of trophic links. Log biomass was positively correlated
with the percentage of disrupted food webs and was the most strongly
correlated of the three variables in all three ecosystems (p < 0.05,
Table 4). Trophic level of the perturbed group was negatively corre-
lated with the percentage of disrupted food webs in all three study
systems, but not significant in the Gulf of Alaska (p = 0.101). The total
number of trophic links for a perturbed group had a significant (p <
0.05) positive correlation with the percentage of disrupted ecosystems
for the eastern Chukchi Sea and eastern Bering Sea simulations, but was
not significant for the Gulf of Alaska simulations.

4. Discussion

Our analysis identified a number of key sensitivities of upper trophic
level groups from a selection of marine ecosystems in Alaska. We found
upper trophic levels in the eastern Chukchi Sea food web to be most
sensitive to perturbations to benthic invertebrates, in the eastern Bering
Sea upper trophic level groups were sensitive to perturbations of shrimp
and pollock, and in the Gulf of Alaska they were sensitive to pertur-
bations of shrimp, pelagic forage fish, and zooplankton. Across eco-
systems, the median recovery times of upper trophic level biomass to
most perturbations were less than 5 years and there were no indications
of ecosystems flipping to alternate stable states in response to pertur-
bations. This indicates these modeled food webs were robust to the
parameter uncertainty present and the simple first-order perturbations
conducted here. The Ecosense routine permitted a wide exploration of
the parameter space around the vulnerability parameter of the func-
tional response and the base model parameters. This provided us with a
range of outcomes to the specific perturbations and indicated the
median recovery time and how robust the outcomes were to different
parameter combinations. These analyses also shed light on instances
where combinations of parameter draws led to unsustainable biomass
dynamics or systems that were unable to recover from perturbations.
However, given the total number of simulations across all three eco-
systems (>72,000), such circumstances were extremely rare.

The mortality-based perturbations of the eastern Chukchi Sea food
web revealed that upper trophic levels in this ecosystem were generally
more sensitive to perturbations of benthic invertebrate functional
groups than to fishes, pelagic invertebrates, seabirds, or marine mam-
mals. We found that the percentage of generated ecosystems disrupted
by a perturbation was positively correlated with the perturbed group's
biomass, the number of trophic links, and negatively correlated with
their TL. In general, benthic invertebrate functional groups in the
eastern Chukchi Sea model closely align with this profile, as they are
high biomass, lower trophic level, and have many trophic links. In
contrast, the percentage of ecosystems disrupted by a perturbation in
the Gulf of Alaska had a significant positive correlation with the per-
turbed group's biomass, but did not have a significant correlation with
the perturbed groups trophic level or the number of trophic links

(α = 0.05). Smith et al. (2011) simulated fishing on lower trophic level
groups with an ensemble of ecosystem models, including EwE models,
and found that the relative abundance of the perturbed group and their
level of connectance to the rest of the food web helped explain the
response of other groups in the food web. This is consistent with the
positive correlations we observed between the number of food webs
with disrupted upper trophic levels and the biomass and number of
trophic links of the perturbed group.

System recovery times to perturbations were interpreted in this
study as a measure of the stability of the model ecosystems; that is, their
ability to endure a perturbation and to return to their baseline config-
uration following a perturbation (Holling 1973, Pimm 1984). Previous
studies with EwE have also considered system recovery time in response
to a perturbation as a measure of food web stability.
Vasconcellos et al. (1997) examined the stability of EwE models for 18
different ecosystems when key mid-trophic level groups were per-
turbed. They found that system recovery time was negatively correlated
with Finn's Cycling Index, which provides a measure of energy flow that
is recycled within the ecosystem (Finn 1976). They concluded that
ecosystems with higher recycling had a greater capacity to return to
starting conditions. A study using EwE models to examine the trophic
role of snappers (Lutjanidae) in the Gulf of Mexico found that system
recovery time was positively correlated with the maximum observed
proportional change in biomass from a group during a simulation
(Arreguin-Sanchez and Manickchand-Heileman 1998). When the im-
pact of a perturbation was the greatest, in terms of biomass, they ob-
served longer system recovery times. This is consistent with our ob-
servation that the number of disrupted food webs was positively related
to the perturbed group's biomass.

Other studies with EwE models have examined system recovery
time under different global vulnerability settings, where all vulner-
abilities were set to low, intermediate (default), or high values. Across
multiple ecosystems and a range of perturbations, system recovery time
was lowest with low vulnerability settings, higher at the intermediate
default value, and highest at high vulnerabilities (Ortiz and Wolff 2002,
Ortiz 2010, Rodriguez-Zaragoza et al. 2016, Hermosillo-
Nunez et al. 2018). Although system recovery time could often not be
evaluated at high vulnerabilities due to the emergence of chaotic os-
cillations (Ortiz et al. 2009, Ortiz et al. 2013, Caceres et al. 2016). Si-
milarly, we observed a few instances where high vulnerabilities re-
sulted in oscillations preventing an estimation of recovery time. The
oscillations we observed may in part be due to the choice of using
Adams-Bashforth numerical integration for our simulations. Rpath also
offers fourth order Runge-Kutta numerical integration that integrates
over finer time steps and may have better resolved rapid biomass dy-
namics, reducing the appearance of oscillations.

Recovery times to perturbations in all disrupted food webs in all
three ecosystems were generally less than 5 years; however, the eastern
Chukchi Sea had the slowest mean recovery time across all disrupted
food webs at 4.7 years. The mean recovery times in the eastern Bering
Sea and Gulf of Alaska were 3.1 and 3.4 years, respectively. This in-
dicates that the eastern Chukchi Sea may be more vulnerable to mor-
tality events or extractive activities than the other two ecosystems in-
cluded in this study. The eastern Bering Sea and Gulf of Alaska are
currently subject to multiple anthropogenic stressors including com-
mercial fisheries, shipping, and tourism. The eastern Chukchi Sea is not
presently subject to commercial fisheries (NPFMC 2009) but improved
access due to sea-ice reduction has led to increasing ship traffic
(Smith and Stephenson 2013, Huntington et al. 2015). Additionally,
recent observations of commercial species from the southeastern Bering
Sea in the northern Bering Sea has prompted questions about what the
potential ecosystem impacts could be for the northern Bering Sea and
Chukchi Sea if sub-Arctic species from the southeastern Bering Sea
expand their range northward, and what the implications of such stock
movement would be for fisheries and fisheries management
(Stevenson and Lauth 2019). Modeling tools that incorporate

Table 4
Pearson product-moment correlation (ρ) between the percentage of generated
food webs where upper trophic level biomass was disrupted by perturbing a
particular functional group and properties of that functional group. Bolded p-
values are significant correlations (α = 0.05).

ECS EBS GOA
Variable ρ P ρ P ρ P

trophic level -0.48 <0.001 -0.31 0.034 -0.25 0.102
ln(biomass) 0.64 <0.001 0.64 <0.001 0.58 <0.001
trophic links 0.36 0.012 0.41 0.003 0.22 0.155

G.A. Whitehouse and K.Y. Aydin Ecological Modelling 429 (2020) 109074

11



uncertainty, such as Ecosense, could be useful in the exploration of
potential ecosystem impacts due to immigration of new species, chan-
ging community composition, and the exploration of fishery manage-
ment strategies.

As an alternative to recovery time, Smith et al. (2011) examined the
impact of simulated fishing on lower trophic level groups by tracking
the number of functional groups whose biomass deviated beyond a
threshold in response to the intensity of fishing on the target species. In
contrast to recovery time, this allowed them to quantify the level of
disruption the fishing strategy caused in terms of how many groups in
the food web experienced an adverse effect. We did not take this ap-
proach in our current analysis, but the approach of Smith et al. (2011)
could be utilized with Ecosense to examine which functional groups
show consistent responses to perturbations or experimental fishing
strategies. This could be a particularly useful strategy if there are par-
ticular commercial or protected species that are believed to be espe-
cially vulnerable.

Ecosense in its original C++ format has previously been used in a
comparative framework to contrast the response of multiple ecosystems
to the same set of pressures. Aydin et al. (2003) examined the response
of the eastern and western basins of the subarctic Pacific to increasing
primary production and the removal of selected prey and predator
groups. The removal of mid-trophic level groups had direct effects on
prey, who often increased in abundance under the predatory release,
and select predators decreased who were particularly dependent on the
removed group. Other groups who shared prey resources with the re-
moved group often benefited from the removal of competitors and in-
creased in abundance. The direct effects observed by Aydin et al. (2003)
are consistent with our observation that the number of ecosystems
disrupted by a perturbation was positively correlated with the number
of trophic links of the perturbed group and negatively correlated with
trophic level.

Aydin et al. (2007) used Ecosense to examine variation in predation
mortality for important prey groups and the consequences of changing
predator production across the eastern Bering Sea, Gulf of Alaska, and
Aleutian Islands ecosystems. Although many taxa are shared across
these ecosystems, the uncertainty captured by the Ecosense routine
helped to identify key forage species that each food web was uniquely
sensitive to. These sensitivities were often the result of little data or
structural differences in the food webs. Similarly, in our study, key
sensitivities in our perturbation analysis generally reflected structural
differences between the food webs examined and poor data pedigree
scores. The sensitivity of upper trophic levels in the eastern Chukchi Sea
to benthic invertebrates reflects their structural dominance in this food
web and, in part, uncertainties about their productivity and trophic
relationships (Hunt et al. 2013, Whitehouse et al. 2014). The sensitivity
of the eastern Bering Sea to pollock reflects their structural dominance
in the food web and their importance as both a predator and prey
(Aydin and Mueter 2007). The sensitivity of the Gulf of Alaska model to
the pelagic forage fish and zooplankton groups reflects the greater
balance between the pelagic and benthic energy pathways in this eco-
system and the prevalence of high trophic level predators such as ar-
rowtooth flounder (Atheresthes stomias) and Pacific halibut (Hippoglossus
stenolepis) (Gaichas et al. 2015).

Ruzicka et al. (2013b) used Ecosense to investigate the food web
impacts of doubling forage fish abundance in four large coastal marine
ecosystems, including the northern California Current, central Gulf of
Alaska, Georges Bank, and the southwestern Antarctic Peninsula. An
important finding of their study was that the immediate short-term
response of selected seabird, whales, and pinnipeds to the perturbations
was often dramatically different from their long-term response. In our
study, we did not directly contrast short-term and long-term response of
individual groups, but indirectly we looked at this in terms of the re-
covery time of disrupted food webs. A key distinction between our
study and that of Ruzicka et al. (2013b) is that our perturbations ended
after 10 years and theirs were maintained over their entire simulations.

We were concerned with the sensitivity of upper trophic levels and their
recovery time while they examined short-term and long-term impacts
from sustained pressures. Using the same four study ecosystems,
Ruzicka et al. (2013a) examined the ecosystems response to increasing
the abundance of selected marine mammal groups to their pre-ex-
ploitation levels. They found these perturbations to be of minimal im-
pact, which is consistent with our findings. While our perturbations
decreased marine mammal abundance rather than an increase, the re-
sults were similar; perturbing marine mammals produced only minor
responses in the rest of the food web. This is largely due to the relatively
low biomass and low total consumption of these groups.

In the three models used in our study, there is a greater level of
disaggregation at higher trophic levels as opposed to lower trophic le-
vels. A consequence of this for upper trophic levels is that the individual
groups have lower biomass and thus lower total consumption. If higher
trophic level groups were more aggregated, they may have stronger
top-down effects on the food web. Additionally, a study examining the
sensitivity EwE food webs to varying levels of aggregation found that
models that were highly aggregated at lower trophic levels were in-
herently more resistant to perturbations (Pinnegar et al. 2005).

Gaichas et al. (2015) used Ecosense to compare the eastern Bering
Sea and Gulf of Alaska food webs and to examine how climate and
fisheries interact with food web structure to produce different outcomes
for the food webs. In particular, they examined the role of pollock and
the combined effects of climate and pollock fisheries in these ecosys-
tems. A key feature of their Ecosense simulation results is the higher
level of variability in the Gulf of Alaska response to the same pertur-
bations applied to the eastern Bering Sea. This result has important
implications to fisheries management as it suggests we may be less able
to predict likely outcomes to anticipated stressors in the Gulf of Alaska
as compared to the eastern Bering Sea (Gaichas et al. 2015). In our
study, while we found both of these ecosystems to be sensitive to per-
turbations to pollock, we found the range of recovery times to be much
narrower and shorter in the eastern Bering Sea (Figure 2d) than in the
Gulf of Alaska (Figure 2f). And consistent with the findings of
Gaichas et al. (2015), we found the range of recovery times to pertur-
bations in the Gulf of Alaska ensemble to be more than twice as wide as
in the eastern Bering Sea, ranging up to 10 years (Figure 2f). However,
it should also be noted that while recovery times to pollock perturba-
tions in the eastern Bering Sea were consistently shorter than in the Gulf
of Alaska, the percentage of ensemble ecosystems disrupted was nearly
three times as high in the eastern Bering Sea (11.1%) than in the Gulf of
Alaska (3.8%). This result highlights the structural importance of pol-
lock to both ecosystems but emphasizes a greater level of stability in the
eastern Bering Sea food web regarding the perturbations we applied to
pollock.

Other studies utilizing Ecosense have focused on a single species or
food web. In a study investigating the production and growth of salmon
in the northeast Pacific, Aydin et al. (2005) conducted a perturbation
analysis with Ecosense similar to what we did in the present study.
However, instead of increasing mortality of each species in turn and
examining the effect on upper trophic levels, they increased the bio-
mass of each species one at a time and looked at the effect this had on
pink salmon (Oncorhynchus gorbuscha). Similar to our results they found
bottom-up effects from perturbing mid- and lower trophic level species
to be strongest, while top-down effects from perturbing higher trophic
levels were difficult to detect. Aydin and Mueter (2007) also conducted
a perturbation analysis using Ecosense during their examination of the
dynamics of the eastern Bering Sea food web. They decreased produc-
tion of selected prey groups one at a time and examined their effect on
the food web, and in particular the effect on pollock. They found pol-
lock to be sensitive to reduced prey production. They also observed that
when pollock recruitment was reduced, competitors of juvenile pollock
benefitted from the competitive release and increased in their abun-
dance. This finding suggests that as long as there are other species
filling a similar ecological role, a significant loss in one species might
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not have much effect on the broader food web.
Previous studies that used Ecosense have taken different approaches

to addressing uncertainty in the predator-prey functional response.
Aydin et al. (2003) ran their simulations with global vulnerability set-
tings where all links were set to the same high, low, or intermediate
values. In general, they found the direction of biological response to
perturbations to be consistent but the magnitude of response was higher
under the high vulnerability settings (i.e., top-down control). Although
we did not use a global vulnerability setting for all groups, we did
observe instances where relatively high vulnerabilities led to rapid,
high amplitude oscillations for some linked groups. This indicates that
links characterized by top-down control may be more sensitive to
perturbations or additional stressors, and their response to stressors
may be more pronounced.

Gaichas et al. (2012) used Ecosense to evaluate the robustness of
their EwE model of the Gulf of Alaska to uncertainty in the functional
response under scenarios of varying fishing pressure. They found the
outcomes of their simulations to be robust to functional response un-
certainty at low to moderate levels of fishing pressure. However, sce-
narios with high levels of fishing pressure resulted in more frequent
species extinctions and there were less successful parameter sets. Their
results highlight the need to explore a wide range of functional response
parameter space as there is not likely to be a single best combination,
and those combinations that are successful may vary subject to the
additional pressures experienced by the ecosystem.
Ruzicka et al. (2013a) and Ruzicka et al. (2013b) also drew vulner-
ability parameters for each individual trophic link from the full range of
parameter space. Drawing the functional response from the full effec-
tive range acknowledges the high level of uncertainty in these inter-
actions and the importance of these interactions to population dy-
namics. This is comparable to the approach we used in this study where
we varied vulnerability over the full effective range for each trophic
link individually, in each generated ecosystem. Such wide explorations
of parameter space for the functional response, in combination with the
draws of base model parameters, addresses a key source of uncertainty
in multispecies modelling as identified in the literature (Plagányi and
Butterworth 2004, FAO 2008, Gaichas et al. 2012, Link et al. 2012).
Including that uncertainty in model results by providing a distribution
of simulation outcomes, provides an indication of how robust the re-
sults are to uncertainty in the functional response.

A key limitation of our study is the simplicity of the perturbations
we employed. Increasing the mortality on one group at a time is a useful
approach as a first step toward identifying key sensitivities in the food
web but it is not representative of any realistic scenario likely to occur
in nature or induced by anthropogenic activity. Additionally, all our
perturbations involved increasing mortality and we did not explore the
potential impacts of increasing production or changes in primary pro-
duction. The metric of aggregated upper trophic level biomass, which
we used to track any ecosystem disruption, is an admittedly simple and
coarse metric, which alone does not carry a clear ecological inter-
pretation. We used this metric here only as a means to detect a rela-
tively large-scale food web response to the prescribed perturbations,
and it is not used to provide a theoretical interpretation of any unique
food web response to perturbations. We sought only to identify func-
tional groups to which the food web models demonstrated sensitivity.

It is not likely that any disturbance to an ecosystem will only affect a
single species in isolation. There will likely be synergistic effects from
multiple stressors acting on an ecosystem at any given point in time. For
example, in the Pacific Arctic, sea-ice coverage and the duration of the
ice-covered season is expected to continue to be reduced in the future
(Wang and Overland 2015). Changes to sea-ice phenology can have
bottom-up effects on the food web by affecting the timing, magnitude,
and nature of primary production (Ji et al. 2013). Changes to primary
production will also effect the synchronized life history events of pe-
lagic secondary producers (Edwards and Richardson 2004,
Søreide et al. 2010, Leu et al. 2011, Daase et al. 2013) and the delivery

of organic matter to support the benthic food web (North et al. 2014,
Grebmeier et al. 2015, Lovvorn et al. 2015). Climate change and in-
creasing water temperatures can effect species growth, bioenergetics,
and impact the spatial distribution of predators and prey, changing
species composition and altering trophic dynamics. Convening subject
matter experts in a workshop setting to outline detailed scenarios for
predicted or potential disturbances could produce the detailed frame-
work necessary for simulations with Ecosense that would provide va-
luable guidance for resource managers in the face of simultaneous
stressors to ecosystem structure and function, and competing societal
goals.

We used a data pedigree with corresponding confidence intervals to
describe uncertainty in model parameters by drawing parameters from
uniform distributions (except diet composition, Dirichlet distribution)
centered on initial parameter estimates. This simplified approach
standardized the generation of parameters across all functional groups
for simulations and analyses. However, this approach can potentially
increase uncertainty in parameter estimates and even model outputs by
not utilizing all available information on a parameters statistical
properties such as distribution shape and standard deviation
(Regan et al. 2002). If a particular probability distribution is desired for
one of the EwE parameters generated in the Ecosense routine, it can be
specified by the user in the Ecosense code. Additionally, some life
history parameters are thought to be correlated (Charnov et al. 1991)
and specific knowledge of some life history parameters may be used to
predict other less known parameters (Thorson et al. 2017). A next step
for parameter generation will be to investigate how “known” life his-
tory parameters can be used to inform parameter draws for unknown
parameters and how this may influence uncertainty and simulation
results.

The three EwE models compared in this study exist across a near
continuous latitudinal gradient in the Northeast Pacific Ocean, and as
adjacent systems, they share many taxa and are connected via ocea-
nographic linkages. While it is preferable for all parameters in a food
web model to be system specific, it is not practical as the data and rates
required to support those parameters do not often exist, particularly for
non-commercial and other less studied species. When direct parameter
estimates are unavailable they can be obtained from the literature, in-
cluding other food web models, and preference is often given to para-
meter estimates for species with a close taxonomic relationship and/or
parameter estimates derived from studies in nearby ecosystems. Such is
the case with the three food web models used in this study. While
parameters estimated specifically for each ecosystem would be ideal, as
a practical matter, this is not possible, and there are a number of
functional groups who share parameters that are common to all three of
the ecosystems in this study or are shared between two of the systems.
There are nine functional groups that have the same base P/B and Q/B
across all three food web models, including gray whales, shrimps, and
copepods. Additionally, there are another 18 functional groups that
have the same base P/B and Q/B between the eastern Bering Sea and
Gulf of Alaska. These common parameters could contribute to similar
dynamics between the compared systems or potentially obscure dif-
ferences that may be apparent with ecosystem-specific parameters,
should those “true” parameters ultimately have different values.
Despite the common parameters, there are a large number of structural
and functional differences between these food webs and we have ob-
served a number of distinctions between the simulation results across
the three systems.

We have demonstrated here how uncertainty in Ecopath model
parameters and the predator-prey functional response can be in-
corporated into scenario-based simulations with Ecosim, using the
Rpath package. The inclusion of parameter uncertainty in the simula-
tion framework helps to convey the range of possible outcomes from the
modeled perturbations and can help prevent overconfidence in simu-
lation results with a single model. The Ecosense routine allows for the
inclusion of uncertainty and can help to identify key sensitivities in food
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webs and highlight direct and indirect effects of disturbances mediated
by trophic interactions. Adequate characterization of uncertainty in
model results improves communication of the strength and direction of
modelled results and will help models to support marine EBM. Although
the simulations presented here are simple examples, Rpath with
Ecosense could be used by fisheries scientists and resource managers to
explore a range of possible outcomes to simulations of detailed policy
options or for investigating potential outcomes to anticipated climate
impacts (Gaichas et al. 2015).
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